2016 International Conference on Measurement and Test Methodologies, Technologies and Applications Phuket, Thailand, 24-25 April, 2016

Application of impulse excitation technique to investigation of concrete damping and its changes at early ages

Prof. Ta-Peng Chang Department of Civil and Construction Engineering National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan

Paper is supported by RFBR Grant #14-08-9208-HHC_a and National Science Council of Taiwan Grant #NSC 103-2923-E-011-002-MY3

2016/12/21

April, 2016

Phuket, Thailand and Taipei, Taiwan

Statistic data of Taiwan Tech

#	Item	number	%
1	Undergraduate student	5500	55.0%
2	M.S. graduate student	3400	34.0%
3	Ph.D. graduate student	1100	11.0%
	Total	10000	100%

 2014-2015 Times Higher Education university ranking: 356
 2014/2015 QS (Quacquarelli Symonds) university ranking : 371
 2013 Times Higher Education-QS World University Rankings among Asian universities: 52

Outline

Abstract Introduction Impulse excitation technique **Experimental setup** Experiment and discussion **Conclusions**

Abstract (1)

- This paper considers experimental results of internal friction test of concrete blocks using impulse excitation technique.
- Three concrete blocks (120 × 80 ×
 40mm) have been tested at the ages of 7,
 14, 28, 56 and 91 days with the
 Resonant Frequency Damping
 Analyzer (RFDA) Basic.

Abstract (2)

- Mix proportions of the material were selected according to the ACI 211.1-91 method.
- The material of specimens is assumed to be isotropic, and it was proved that this assumption could be applied in practice.
- □ It was shown that damping of concrete reduces with time.

Abstract (3)

- □ The most significant changes occur at very early ages, before 14 days.
- After that this process slows down, however, it continues with a lower rate.

Introduction (1)

- □ Traditionally, concrete = purely elastic material, in reality, at early ages → not always.
- □ In fact, concrete is a viscoelastic material, especially at early ages.
- Fresh concrete is a viscous mixture of cement, water and aggregates in a basic composition.
 2016/12/21

Introduction (2)

- Setting and hardening: elastic properties ↑ and viscous properties ↓
- □ Concrete transformation: viscoelastic material → elastic-like material
- □ Viscoelastic material: *E**=*E*'+*iE*'' complex Yong's Modulus, where **E**' – elastic properties and **E**'' – viscous properties

Introduction (3)

- □ Internal friction, or damping
- $\Box Q^{-1} = E^{\prime\prime}/E^{\prime}$
- □ is an important parameter to describe the properties and behavior of the material.

IET and RFDA

Impulse excitation technique (IET) $\blacksquare Light impact \rightarrow vibrations \rightarrow$ \rightarrow microphone \rightarrow Resonant Frequency and Damping Analyzer (RFDA) Software \rightarrow Resonant Frequencies f_r $\rightarrow Q^{-1} = k/\pi f_r$ k - the exponential decay parameter **Details** [1,2]

Experimental setup (1)

Fig. 1 Original universal wire support for the RFDA Basic

Fig. 2 Steel wire support designed by authors

RFDA software, USB hardware key, Logitech USB microphone, Universal wire support

2016/12/21

Experimental setup (2)

Fig. 3 Damping test setup

Experimental setup (3)

Measurements result when the reference sample is impacted by the reference impactor using steel wire support and

Measurements result when the reference sample is impacted by the steel spherical impactor (15.88 mm in diameter)

Are very close to each other => TYPE OF IMPACTOR DOESN'T AFFECT THE RESULTS

Experimental setup (4)

Tab. 1 Comparison of test results with different impactors

F, Hz	Loss rate	Damping	Peak value	F, Hz	Loss rate	Damping	E, GPa	G, GPa	v
8168.61	31.1	0.001211	168	10488.4	29.0	0.000880	209.42	80.55	0.3
8168.27	29.8	0.001159	126	10488.5	28.0	0.000849	209.40	80.55	0.3
8168.91	27.2	0.001058	172	10487.2	29.5	0.000895	209.44	80.53	0.3
8168.72	25.1	0.000977	222	10489.6	23.8	0.000721	209.42	80.57	0.3
8168.55	25.9	0.001009	173	10488.5	25.9	0.000787	209.41	80.55	0.3
8168.79	24.9	0.000969	202	10488.6	24.3	0.000736	209.43	80.55	0.3
8168.56	23.6	0.000919	154	10488.5	22.4	0.000681	209.41	80.55	0.3
8168.90	25.3	0.000985	270	10489.2	23.8	0.000723	209.43	80.56	0.3
8168.37	23.9	0.000931	99	10488.5	29.2	0.000886	209.40	80.55	0.3
8168.57	24.9	0.000969	144	10489.4	36.3	0.001103	209.41	80.56	0.3
8168.39	23.1	0.000899	211	10488.7	22.3	0.000676	209.40	80.55	0.3
					_				
F, Hz	Loss rate	Damping	Peak value	F, Hz	Loss rate	Damping	E, GPa	G, GPa	v
F, Hz 8168.4	Loss rate 23.6	Damping 0.000918	Peak value 223	F, Hz 10489.2	Loss rate 24.9	Damping 0.000757	E, GPa 209.41	G, GPa 80.56	v 0.3
F, Hz 8168.4 8168.8	Loss rate 23.6 21.4	Damping 0.000918 0.000832	Peak value 223 219	F, Hz 10489.2 10488.7	Loss rate 24.9 33.1	Damping 0.000757 0.001005	E, GPa 209.41 209.42	G, GPa 80.56 80.55	v 0.3 0.3
F, Hz 8168.4 8168.8 8170	Loss rate 23.6 21.4 27.2	Damping 0.000918 0.000832 0.00106	Peak value 223 219 215	F, Hz 10489.2 10488.7 10488.6	Loss rate 24.9 33.1 26.4	Damping 0.000757 0.001005 0.000800	E, GPa 209.41 209.42 209.49	G, GPa 80.56 80.55 80.55	v 0.3 0.3 0.3
F, Hz 8168.4 8168.8 8170 8169.1	Loss rate 23.6 21.4 27.2 21.3	Damping 0.000918 0.000832 0.00106 0.000832	Peak value 223 219 215 220	F, Hz 10489.2 10488.7 10488.6 10487.7	Loss rate 24.9 33.1 26.4 28.9	Damping 0.000757 0.001005 0.000800 0.000878	E, GPa 209.41 209.42 209.49 209.44	G, GPa 80.56 80.55 80.55 80.54	V 0.3 0.3 0.3 0.3
F, Hz 8168.4 8168.8 8170 8169.1 8169.5	Loss rate 23.6 21.4 27.2 21.3 20.6	Damping 0.000918 0.000832 0.00106 0.000832 0.000803	Peak value 223 219 215 220 161	F, Hz 10489.2 10488.7 10488.6 10487.7 10487.9	Loss rate 24.9 33.1 26.4 28.9 22.2	Damping 0.000757 0.001005 0.000800 0.000878 0.000674	E, GPa 209.41 209.42 209.49 209.44 209.47	G, GPa 80.56 80.55 80.55 80.54 80.54	v 0.3 0.3 0.3 0.3 0.3
F, Hz 8168.4 8168.8 8170 8169.1 8169.5 8169.5	Loss rate 23.6 21.4 27.2 21.3 20.6 22.9	Damping 0.000918 0.000832 0.00106 0.000832 0.000803 0.000893	Peak value 223 219 215 220 161 196	F, Hz 10489.2 10488.7 10488.6 10487.7 10487.9 10489.6	Loss rate 24.9 33.1 26.4 28.9 22.2 26.1	Damping 0.000757 0.001005 0.000800 0.000878 0.000674 0.000792	E, GPa 209.41 209.42 209.49 209.44 209.47 209.46	G, GPa 80.56 80.55 80.55 80.54 80.54 80.57	v 0.3 0.3 0.3 0.3 0.3 0.3 0.3
F, Hz 8168.4 8168.8 8170 8169.1 8169.5 8169.5 8169.8	Loss rate 23.6 21.4 27.2 21.3 20.6 22.9 25.6	Damping 0.000918 0.000832 0.00106 0.000832 0.000803 0.000893 0.000999	Peak value 223 219 215 220 161 196 236	F, Hz 10489.2 10488.7 10488.6 10487.7 10487.9 10489.6 10489.4	Loss rate 24.9 33.1 26.4 28.9 22.2 26.1 28.6	Damping 0.000757 0.001005 0.000800 0.000878 0.000674 0.000792 0.000867	E, GPa 209.41 209.42 209.49 209.44 209.47 209.46 209.48	G, GPa 80.56 80.55 80.55 80.54 80.54 80.57 80.56	 v 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
F, Hz 8168.4 8168.8 8170 8169.1 8169.5 8169.5 8169.8 8170.4	Loss rate 23.6 21.4 27.2 21.3 20.6 22.9 25.6 24.3	Damping 0.000918 0.000832 0.00106 0.000832 0.000803 0.000893 0.000999 0.000945	Peak value 223 219 215 220 161 196 236 276	F, Hz 10489.2 10488.7 10488.6 10487.7 10487.9 10489.6 10489.4 10491.1	Loss rate 24.9 33.1 26.4 28.9 22.2 26.1 28.6 24.9	Damping 0.000757 0.001005 0.000800 0.000878 0.000674 0.000792 0.000867 0.000867	E, GPa 209.41 209.42 209.49 209.44 209.47 209.46 209.48 209.51	G, GPa 80.56 80.55 80.55 80.54 80.54 80.57 80.56 80.59	v 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
F, Hz 8168.4 8168.8 8170 8169.1 8169.5 8169.5 8169.8 8170.4 8170.9	Loss rate 23.6 21.4 27.2 21.3 20.6 22.9 25.6 24.3 22.6	Damping 0.000918 0.000832 0.00106 0.000832 0.000803 0.000893 0.000999 0.000945 0.000881	Peak value 223 219 215 220 161 196 236 276 225	F, Hz 10489.2 10488.7 10488.6 10487.7 10487.9 10489.6 10489.4 10491.1 10490.5	Loss rate 24.9 33.1 26.4 28.9 22.2 26.1 28.6 24.9 29.7	Damping 0.000757 0.001005 0.000800 0.000878 0.000674 0.000792 0.000867 0.000755 0.000755	E, GPa 209.41 209.42 209.49 209.44 209.47 209.46 209.48 209.51 209.54	G, GPa 80.56 80.55 80.54 80.54 80.54 80.57 80.56 80.59 80.58	 V 0.3

Experiment and discussion (1)

Fig. 4 Concrete blocks 120x80x40 mm for internal friction test

Experiment and discussion (2)

Tab. 2 Mix proportions, kg/m³, ACI method

Water	Cement	Fine ag.	Coarse ag.	SP
213.849	484.751	796.384	881.462	2.200

Slump: 140 mm Curing conditions: wet

Experiment and discussion (3)

Fig. 5 Fresh concrete slump test: 140 mm

Experiment and discussion (4)

Fig. 5 Compressive strength development 55 Average Compressive strength Compressive strength, MPa 50 Sample 3 45 Compressive strength Sample 2 40 Compressive strength 35 Sample 1 Compressive strength 30 10 15 20 25 30 0 5 Age, days

2016/12/21

Experiment and discussion (4)

Isotropic material assumption

Similar to impact-echo method:

- The wavelengths of the stress waves are:
- 50mm ~ 2000mm
- <u>longer than the scale of natural</u> <u>inhomogeneous regions in</u> <u>concrete</u> (aggregate, air bubbles, microcracks, etc.) [3].

Conclusions

- $\Box RFDA Basic \rightarrow Concrete damping$
- **Assumption of isotropic material is OK!**
- **Damping: highest values at early ages**
- **Damping: decreases with time**
- □ The most significant change: till 14 days
- □After 14 days → slows down
- □Hardening: E" %↓ within 2 weeks and E'

Acknowledgement

 The research described in this publication has been supported by Russian
 Foundation for Basic Research Grant #14-08-9208-HHC_a and National Science
 Council of Taiwan Grant #NSC 103-2923-E-011-002-MY3.

References

- [1] G. Roebben, B. Bollen, A. Brebels, J. Van Humbeeck and O. Van der Biest, Impulse excitation apparatus to measure resonant frequencies, elastic moduli, and internal friction at room and high temperature, Rev. Sci. Instrum. 68(12) (1997) 4511-4515.
- [2] IMCE RFDA Basic Manual v. 1.1, IMCE N.V., Slingerweg 52, B-3600 Genk, Belgium.
- [3] Field Instruments for Nondestructive Evaluation of Concrete & Masonry, Impact-Echo Instruments, LLC Ithaca, New York, 9 October, 2003, pp. 1-9.

Taipei 101 (height 509.2 m) World tallest building (Dec. 31, 2004 ~ Jan 4, 2010)

2016/12/21