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Impact response of a viscoelastic beam considering
the changes of its microstructure in the contact domain
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Abstract The problem on low-velocity impact of a long thin elastic rod with a flat end upon
an infinite viscoelastic Timoshenko-type beam, the dynamic behaviour of which is described
by a set of equations taking the rotary inertia, transverse shear deformation and extension
of the beam’s middle surface into account, is considered. The viscoelastic features of the
beam are governed by the standard linear solid model with derivatives of integer order. At
the moment of impact, shock waves (surfaces of strong discontinuity) are generated both
in the impactor and target, the influence of which on the contact domain is considered via
the theory of discontinuities. The contact zone moves like a rigid whole under the action
of the contact force and longitudinal and transverse forces applied to the boundary of the
contact region, which are obtained on the basis of one-term ray expansions. During the
impact process, decrosslinking within the domain of the contact of the beam with the rod
occurs, resulting in more free displacements of molecules with respect to each other, and
finally in the decrease of the beam material viscosity in the contact zone. This circumstance
allows one to describe the behaviour of the beam material within the contact domain by the
standard linear solid model involving fractional derivatives, since variation in the fractional
parameter (the order of the fractional derivative) enables one to control the viscosity of the
beam material. The contact force has been determined analytically via the Laplace transform
technique.
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1 Introduction

The problems connected with the analysis of the shock interaction of thin bodies (rods,
beams, plates, and shells) with other bodies have widespread application in various fields
of science and technology. The physical phenomena involved in the impact event include
structural responses, contact effects and wave propagation. These problems are topical not
only from the point of view of fundamental research in applied mechanics, but also with
respect to their applications. Because these problems belong to the problems of dynamic
contact interaction, their solution is connected with severe mathematical and calculation
difficulties. To overcome this impediment, a rich variety of approaches and methods have
been suggested, and the overview of current results in the field can be found in recent state-
of-the-art articles (Abrate 2001; Rossikhin and Shitikova 2007b, 2010, 2013).

All impactors according to their geometry could be divided into two types, namely: with a
flat end and with a rounded end, resulting in different approaches for solving contact/impact
problems (Rossikhin and Shitikova 2007b), since the contact domain remains unchanged in
time in the first case, and it is a time-dependent function in the second case. The impactors
with rounded ends are considered in the majority of papers devoted to the impact interaction
of solids, and the Hertz contact law or its modifications is used for defining the contact force.

But in many practical applications plane-ended indentors and impactors are used, and
there is a need to analyse the contact force arising in such problems especially when vis-
coelastic features of the impactors and/or targets should be taken into account. Thus, Ar-
gatov et al. (2013) considered a viscoelastic layer bonded to a rigid substrate indented by
a flat-ended cylindrical indenter. Argatov (2013) studied an axisymmetric contact problem
for a thin biphasic layer indented without friction by a rigid impermeable cylindrical inden-
ter. Perturbation analysis of the impact process according to the standard viscoelastic solid
model was performed in Argatov (2013), wherein asymptotic solutions are obtained for the
drop weight impact test. Sinusoidally-driven flat-ended indentation of time-dependent ma-
terials was investigated in Argatov (2012), and simple asymptotic models for low and high
rate loading were suggested.

An exact analytical solution for the problem of a semi-infinite elastic rod struck by a rigid
mass through a linear Kelvin–Voigt element was presented in Argatov and Jokinen (2013).
Axial impact between a cylindrical striker of finite length and a long cylindrical bar, both
of linearly viscoelastic materials, was considered by Bussac et al. (2008). A computational
model capable of handling viscoelastic contact-impact problems was proposed in Assie et al.
(2010), and one, two and three-dimensional finite element models were illustrated by longi-
tudinal impact of two viscoelastic bars, by the analysis of the impact of two sheets and two
blocks, the viscoelastic features of which are described by the standard linear solid model,

In recent decades fractional calculus (integral and differential operators of noninteger
order), which has a long history (Valério et al. 2014), has been the object of ever in-
creasing interest in many branches of natural science, and of engineering interest as well.
Thus, Rossikhin and Shitikova (2010) have reviewed the application of fractional calcu-
lus to dynamic problems of linear and nonlinear hereditary mechanics of solids, among
them, the problems of dynamic contact interaction. Two approaches have been discussed for
studying the impact response of fractionally damped systems subjected to falling impactors
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(Rossikhin and Shitikova 2013). The first one is based on the assumption that viscoelastic
properties of the target manifest themselves only in the contact domain, while the other part
of the target remains elastic one. This approach results in defining the contact force and the
local penetration of target by an impactor from the set of linear fractional differential equa-
tions. The second approach is the immediate generalization of the Timoshenko approach
utilising the viscoelastic analog of Hertz’s contact law by substituting elastic constants by
the corresponding viscoelastic operators. This approach results in the nonlinear functional
equation for determining the contact force or the impactor’s relative displacement.

In the present paper, dynamic response of a viscoelastic beam impacted by a long plane-
ended elastic rod is studied using two approaches. The first one is the development of the pre-
vious analysis carried out in Rossikhin and Shitikova (1996, 2007b) for an elastic isotropic
Timoshenko beam subjected to the impact by an elastic long rod by considering a hereditar-
ily elastic Timoshenko-like beam impacted by an elastic prismatic long rod of a rectangular
cross-section.

The second approach is based on the dynamic theory of the behaviour of thin bodies,
which differs from the Timoshenko theory and which was recently proposed in Rossikhin
and Shitikova (2007a, 2008, 2011). This theory is based on three-dimensional equations of
the material from which a thin body is made of, on the theory of discontinuities based on
the conditions of compatibility suggested by the authors, and on the classical assumptions
for thin bodies, namely, the hypothesis about plane sections or rigid profile, non-press of
layers, and so on. Within the framework of this theory, a set of recurrent equations in dis-
continuities of arbitrary order in time for desired values is deduced, which allows one to
construct with a help of the ray series the solution of boundary-value problems dealing with
the transient dynamic loads on thin bodies, resulting in propagation of transient waves (sur-
faces of discontinuities) in the thin bodies. This theory is free from additional constants, like
shear coefficients in the Timoshenko theory which depend on the geometry of thin body’s
cross-section and are not determined experimentally, and is based only on the material’s
constants.

In both approaches used in the given paper, the viscoelastic properties of the beam are de-
scribed by the standard linear solid model with integer time-derivatives. During the impact
process, decrosslinking within the domain of the contact of the beam with the rod occurs, re-
sulting in more free displacements of molecules with respect to each other, and finally in the
decrease of the beam material viscosity in the contact zone. This circumstance allows one to
describe the behaviour of the beam material within the contact domain by the standard linear
solid model involving fractional derivatives, since variation in the fractional parameter (the
order of the fractional derivative) enables one to control the viscosity of the beam material.

2 Problem formulation and governing equations

Let a long prismatic elastic rod of a rectangular cross-section with the dimensions 2τim

and a move along the y-normal with the velocity V0 towards a viscoelastic homogeneous
isotropic rectangular Timoshenko beam of infinite extent (this assumption is introduced due
to the short duration of contact interaction in order to ignore reflected waves) with width a

and thickness h, in so doing the normal y is erected at the middle of the beam (Fig. 1(a)). The
viscoelastic features of the beam are described by the standard linear solid model (Fig. 1(b)).

The dynamic behaviour of such a beam is described by the following set of equations:

∂N

∂z
= ρF v̇z, (1)
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Fig. 1 Scheme of the shock
interaction of a viscoelastic beam
and the plain-ended impactor

∂Q

∂z
= ρF v̇y, (2)

∂M

∂z
− Q = −ρIΨ̇ , (3)

N = FE∞
[
1 − νε �∗

1 (τε)
]∂uz

∂z
, (4)

Q = KFμ∞
[
1 − n �∗

1 (tε)
]
(

∂uy

∂z
− ψ

)
, (5)

M = −IE∞
[
1 − νε �∗

1 (τε)
]∂ψ

∂z
, (6)

where M , Q, and N are the bending moment, the shear and longitudinal forces, respectively,
uz and uy are longitudinal and transverse displacements, respectively, ψ is the angle of
rotation of the cross-section around the z-axis, vz = u̇z, vy = u̇y , Ψ = ψ̇ , F and I are the
cross-sectional area and the moment of inertia with respect to the x-axis, respectively, ρ is
the density, K is the shear coefficient dependent on beam’s geometrical dimensions and the
form of its cross-section, and an overdot denotes the time derivative.

In Eqs. (4) and (6), the operator corresponding to the Young modulus has the form

Ẽ = E∞
[
1 − νε �∗

1 (τε)
]
, (7)

νε = E∞ − E0

E∞
= 	E

E∞
, (8)

�∗
1 (τε)Z(t) = 1

τε

∫ t

0
e−(t−t ′)/τεZ

(
t ′
)

dt ′, (9)

where Z(t) is a desired function, E∞ and E0 are the non-relaxed (instantaneous modulus of
elasticity, or the glassy modulus) and relaxed elastic (prolonged modulus of elasticity, or the
rubbery modulus) moduli which are connected with the relaxation time τε and retardation
time τσ by the following relationship:

τε

τσ

= E0

E∞
. (10)
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In Eq. (5), the operator corresponding to the shear modulus has the form

μ̃ = μ∞
[
1 − n �∗

1 (tε)
]
, (11)

where μ∞ is the non-relaxed magnitude of the shear modulus, and n and tε are for now
unknown constants.

In order to find the inverse operator Ẽ−1, as well as other operators important for further
treatment, it is necessary to obtain formulas governing the product of operators �∗

γ (τi)

(i = ε,σ ).
For this purpose let us differentiate (6) with respect to t . As a result we obtain

Ṁ = −IE∞
[

∂Ψ

∂z
− νε

τε

∂ψ

∂z
+ νε

τ 2
ε

∫ t

0
e−(t−t ′)/τε ∂ψ(t ′)

∂z
dt ′

]
. (12)

Eliminating
∫ t

0 e−(t−t ′)/τε ∂ψ(t ′)
∂z

dt ′ from (6) and (12) yields

M + τεṀ = −IE∞
[
(1 − νε)

∂ψ

∂z
+ τε

∂Ψ

∂z

]
, (13)

or accounting for (8) and (10),

M + τεṀ = −IE0

(
∂ψ

∂z
+ τσ

∂Ψ

∂z

)
. (14)

Let us rewrite formula (14) in the form

M = −IE∞
E0E

−1∞ + τε d/dt

1 + τε d/dt

∂ψ

∂z
. (15)

Let us add and subtract a unit in the numerator of (15) and then divide the numerator
term-wise by the denominator 1 + τε d/dt . As a result we obtain

M = −IE∞
(

1 − νε

1

1 + τε d/dt

)
∂ψ

∂z
. (16)

Comparing relationships (6) and (16) yields

�∗
1 (τε) = 1

1 + τε d/dt
. (17)

On the basis of relationship (17), we can write

�∗
1 (τε) �∗

1 (τσ ) = 1

(1 + τε d/dt)(1 + τσ d/dt)
= A1

1 + τε d/dt
+ B1

1 + τσ d/dt
,

where

A1 = τε

τε − τσ

, B1 = − τσ

τε − τσ

,

whence it follows that

�∗
1 (τε) �∗

1 (τσ ) = τε �∗
1 (τε) − τσ �∗

1 (τσ )

τε − τσ

. (18)
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Relationship (18) represents the theorem of multiplication of the operators �∗
1 (τ ).

To find the inverse operator Ẽ−1, let us represent it in the following form:

Ẽ−1 = E−1
∞

[
1 + νσ �∗

1 (τσ )
]
, (19)

where νσ and τσ are for now unknown constants.
Considering (7), (18), and (19) from the definition of the inverse operator

ẼẼ−1 = 1, (20)

we find

νσ

(
1 + νετσ

τε − τσ

)
�∗

1 (τσ ) − νε

(
1 + νσ τε

τε − τσ

)
�∗

1 (τε) = 0. (21)

From (21) it follows that

1 + νετσ

τε − τσ

= 0, (22)

1 + νσ τε

τε − τσ

= 0. (23)

From (22) and (23) we obtain

τσ = τε

E∞
E0

, (24)

νσ = E∞ − E0

E0
= J0 − J∞

J∞
, (25)

where J0 = E−1
0 , and J∞ = E−1∞ .

Note that formula (24) coincides with formula (10).
Since thin rods are used, as a rule, in creep and relaxation experiments, first of all the

operators Ẽ and Ẽ−1 are determined from such experiments. As numerous experimental
data on viscoelastic materials show (Rabotnov 1966), the operator of volume expansion–
contraction for many viscoelastic materials could be considered as time-independent, i.e.,

K̃ = K∞, (26)

where K∞ = const.
Since in the present paper we study the transverse impact phenomenon, the shear after-

effect plays the most essential role, while the bulk aftereffect could be ignored. Thus, the
above assumption is valid for the problem under consideration.

In other words,

Ẽ

1 − 2̃ν
= E∞

1 − 2ν∞
= 3K∞, (27)

where ν̃ is the Poisson operator, and ν∞ is the non-relaxed Poisson coefficient.
From formula (27) we have

ν̃ = ν∞ + 1

2
(1 − 2ν∞)νε �∗

1 (τε). (28)
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Knowing the operators Ẽ and ν̃, all other operators could be easily calculated. But before
defining the operators μ̃ and λ̃, first we find the operator inverse to the operator

1 + ν̃ = (1 + ν∞)

[
1 + (1 − 2ν∞)νε

2(1 + ν∞)
�∗

1 (τε)

]
. (29)

Using expression

(1 + ν̃)−1(1 + ν̃) = 1

and considering (18) yields

(1 + ν̃)−1 = 1

1 + ν∞

[
1 − D �∗

1 (tσ )
]
, (30)

where tσ = τεC
−1,

D = (1 − 2ν∞)νε

2(1 + ν∞) + (1 − 2ν∞)νε

, C = 2(1 + ν∞) + (1 − 2ν∞)νε

2(1 + ν∞)
.

Accounting for (7), (18), and (30), we obtain

μ̃ = Ẽ

2(1 + ν̃)
= μ∞

[
1 − νε

(
1 − D

τε

τε − tσ

)
�∗

1 (τε)

− D

(
1 + νε

tσ

τε − tσ

)
�∗

1 (tσ )

]
. (31)

Considering that

1 − D
τε

τε − tσ
= 0,

D

(
1 + νε

tσ

τε − tσ

)
= 3νε

2(1 + ν∞)C
,

from (31) we have

μ̃ = μ∞
[
1 − n �∗

1 (tσ )
]
, n = 3νε

2(1 + ν∞)C
. (32)

First we write operator λ̃ in the form

λ̃ = Ẽν̃

(1 − 2̃ν)(1 + ν̃)
= 1

3

Ẽ

1 − 2̃ν
− 1

3

Ẽ

1 + ν̃
,

and then, considering formulae (27) and (31), we rewrite it in the form

λ̃ = λ∞
[
1 + n1 �∗

1 (tσ )
]
, n1 = (1 − 2ν∞)νε

2(1 + ν∞)Cν∞
. (33)

Note that if a mathematical pendulum is used for experimental measurement of internal
friction in a beam, then first of all the operators μ̃ and μ̃−1 are determined, while the other
operators are expressed in terms of them and the constant K∞ (see Appendix).
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The dynamic behaviour of an elastic rod (impactor) is described by the following set of
equations:

∂σ

∂z
= ρimv̇, (34)

σ̇ = Eim
∂v

∂z
, (35)

where σ is the stress, v is the velocity, ρim and Eim are the density and Young’s modulus of
impactor’s material, respectively.

The impact occurs at t = 0 at the point with the coordinate z = 0. The equation of motion
of the contact zone, which is considered to be rigid and which is enclosed between the planes
z = ±τim (Fig. 1) is written as

2τimFρüy = 2N
∂uy

∂z

∣∣
∣∣
z=τim

+ 2Q|z=τim + Fcont, (36)

where the value (2N∂uy/∂z)|z=τim takes the extension of beam’s median surface into ac-
count.

The contact stress within the contact domain could be determined as

σcont = Fcont

2τima
= E∞

[
1 − νε �∗

γ

(
τ γ
ε

)] (α − uy)

h
, (37)

wherein α and uy are, respectively, the displacements of the upper and lower layers of the
beam of the hight h, which models the process of the interaction of the contact domain with
the impactor, resulting in the generation of transverse deformation of the contact zone equal
to (α − uy)h

−1, γ (0 < γ < 1) is the fractional parameter,

(
τε

τσ

)γ

= E0

E∞
, (38)

�∗
γ

(
τ

γ

i

)
Z(t) =

∫ t

0
�γ

(
t − t ′

τi

)
Z

(
t ′
)

dt ′ (i = ε,σ ), (39)

�γ

(
t

τi

)
= tγ−1

τ
γ

i

∞∑

n=0

(−1)n(t/τi)
γ n

Γ [γ (n + 1)] , (40)

Γ [γ (n + 1)] is the Gamma-function, �γ (t/τi) is the Rabotnov fractional exponential func-
tion, which at γ = 1 becomes the ordinary exponent, while the operator �γ (τi) becomes the
operator �1 (τi). When γ → 0, function �γ (t/τi) → δ(t), and σcont turns out to be elastic
and equal to

σcont = E0(α − uy)/h. (41)

It is seen that the fractional parameter γ is the structural parameter allowing one to con-
trol the viscosity of the target material from the pure elastic case at γ = 0 to conventional
viscous state at γ = 1.

From (37) it follows that the contact force can be calculated as

Fcont = Ê∞
[
1 − νε �∗

γ

(
τ γ
ε

)]
(α − uy), (42)
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where Ê∞ = E∞ 2τima

h
is the non-relaxed elastic modulus of the fractional derivative standard

linear solid model valid within the contact domain, while the relative displacement within
the contact zone is defined as

α − uy = Ê−1
∞

[
1 + νσ �∗

γ

(
τ γ
σ

)]
Fcont. (43)

Equation (36) is subjected to the initial conditions

α|t=0 = uy |t=0 = u̇y |t=0 = 0, α̇|t=0 = V0. (44)

If we substitute formula (40) into (39) and consider relationship for the fractional integral

I γ Z(t) =
∫ t

0

(t − t ′)γ−1

Γ (γ )
Z

(
t ′
)

dt ′ (0 < γ ≤ 1), (45)

then as a result we obtain

�∗
γ

(
τ

γ

i

)
Z(t) =

∞∑

n=0

(−1)nτ
−γ (n+1)

i I γ (n+1)Z(t). (46)

If the series on the right-hand side of (46) is interpreted as an infinite decreasing geomet-
ric progression with the denominator q = −I γ τ

−γ

i and the first term a1 = I γ τ
−γ

i , then the
sum of this series could be written in the form

�∗
γ

(
τ

γ

i

)
Z(t) = I γ τ

−γ

i

1 − (−I γ τ
−γ

i )
Z(t). (47)

Introducing into consideration the fractional derivative

Dγ Z(t) = d

dt

∫ t

0

(t − t ′)−γ

Γ (1 − γ )
Z

(
t ′
)

dt ′ (0 < γ ≤ 1), (48)

multiplying the numerator and denominator of the fraction on the right-hand side of formula
(47) by Dγ τ

γ

i , and accounting for Dγ Iγ = I γ Dγ = 1, we have

�∗
γ

(
τ

γ

i

)
Z(t) = 1

1 + τ
γ

i Dγ
Z(t), (49)

i.e.

�∗
γ

(
τ

γ

i

) = 1

1 + τ
γ

i Dγ
(50)

is the dimensionless Rabotnov operator (Rossikhin and Shitikova 2014).
Following (50), we write

�∗
γ

(
τ γ
ε

) �∗
γ

(
τ γ
σ

) = 1

(1 + τ
γ
ε Dγ )(1 + τ

γ
σ Dγ )

= A2

1 + τ
γ
ε Dγ

+ B2

1 + τ
γ
σ Dγ

,

where

A2 = τ γ
ε

τ
γ
ε − τ

γ
σ

, B2 = − τ γ
σ

τ
γ
ε − τ

γ
σ

,
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whence it follows that

�∗
γ

(
τ γ
ε

) �∗
γ

(
τ γ
σ

) = τ γ
ε �∗

γ (τ γ
ε ) − τ γ

σ �∗
γ (τ γ

σ )

τ
γ
ε − τ

γ
σ

. (51)

Comparing formulas (17) and (18) with (50) and (51), we see that the first formulas are
obtained from the second at γ = 1.

The Rabotnov fractional exponential function (Rabotnov 1948) is the second function
after the exponential function, the resolvent kernels of which coincide (see formulas (42)
and (43)). In order to prove the validity of formulas (42) and (43), it is sufficient to elim-
inate the value α − uy from them, to utilise the theorem of multiplication (51), as well as
relationship (38), and then as a result we obtain the identity.

Comparing operators in (42) and (43) with the corresponding operators in (7) and (19),
we see their differences, although the material of the beam within and out of the contact zone
is the same. Such a distinction is connected with the fact that during the process of impact
decrosslinking of long molecules of the viscoelastic material occurs within the domain of
the contact of the beam with the rod, resulting in more free displacements of molecules
with respect to each other, and finally in the decrease of the beam material viscosity in the
contact zone. Since the fractional parameter γ controls the magnitude of viscosity from its
initial value at γ = 1 to the vanishing value at γ = 0, that is why such a substitution is quite
justified.

3 Method of solution

To find the solution of the stated problem, two methods are used, namely, the ray method
and Laplace transform technique. The ray method is applied for constructing an approximate
solution within the elastic part of the beam from the surface of strong discontinuity up to the
boundary of the contact region, as well as for finding the exact solution within the disturbed
domain of the elastic rod. Within the contact domain, the Laplace transformation method is
utilised to determine the contact force.

3.1 A ray method for a viscoelastic Timoshenko beam

To solve Eq. (36), it is necessary to find the values N and Q.
Under proposed assumptions concerning the contact domain, plane transient longitudinal

and transverse shear waves (surfaces of strong discontinuity) propagate from the boundary
of the contact zone during the process of impact. A certain function to be found could be
represented in the form of a ray series

Z(z, t) =
2∑

α=1

∞∑

k=0

1

k! [Z,(k) ]|t=z/G(α)

(
t − z

G(α)

)k

H

(
t − z

G(α)

)
, (52)

where [Z,(k) ] = Z,+(k) −Z,−(k) = [∂kZ/∂tk] are the discontinuities in the kth order derivatives
with respect to time t of the desired function Z(z, t) on the wave surface, the superscript
signs + and − denote that the given value is calculated immediately ahead of and behind the
wave front, respectively, the index α labels the ordinal number of the wave, namely, α = 1
for the longitudinal wave, and α = 2 for the transverse wave, H(t) is the Heaviside function,
and G(α) is the normal velocity of the surface of discontinuity.
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To determine the coefficients of the ray series (52), it is necessary to differentiate the gov-
erning equations (1)–(6) k times with respect to time, take their difference on the different
sides of the wave surface, and apply the condition of compatibility for the (k + 1)-order dis-
continuities of the function Z(x, t), which has the following form (Rossikhin and Shitikova
1995):

G

[
∂Z,(k)

∂z

]
= −[Z,(k+1) ] + d[Z,(k) ]

dt
, (53)

where d/dt is the complete time-derivative of the function Z,(k) (z, t) on the moving surface
of discontinuity.

Since the process of impact is a transient process, first, it is possible to limit ourselves
to the zeroth order terms of the ray series (52), and second, to neglect the waves reflected
from the end face of the beam considering that they reach the contact zone after impactor’s
rebound from the beam.

Further we shall interpret a shock wave in the beam (surface of strong discontinuity) as
a layer of small thickness δ, the head front of which arrives at a certain point M with the
coordinate z at the moment of time t , while the back front of the shock layer reaches this
point at the moment t +�t . The desired values Z(z, t) at the point M , such as velocity, gen-
eralized forces and deformations, during the time increment 	t change monotonically and
uninterruptedly from the magnitude Z− to the magnitude Z+, in so doing within the layer,
according to the condition of compatibility (53), the following relationships are fulfilled for
the displacements and the angle of rotation:

∂uz

∂z
= −G−1vz, (54)

∂uy

∂z
= −G−1vy, (55)

∂ψ

∂z
= −G−1Ψ, (56)

since [uz] = [uy] = [ψ] = 0, while for the values N , Q, and M the following condition of
compatibility holds:

∂Z

∂z
= −G−1 ∂Z

∂t
+ G−1 dZ

dt
. (57)

Changing in (1)–(3), according to formula (44), the derivatives ∂N/∂z, ∂Q/∂z, and
∂M/∂z with the relationships −G−1(∂N/∂z − dN/dz), −G−1(∂Q/∂z − dQ/dz), and
−G−1(∂M/∂z − dM/dz), respectively, integrating the resulting equations with respect to t

from t to t + 	t , letting 	t → 0, and considering that

lim
	t→0

∫ t+	t

t

dZ(z, t)

dt
dt = 0,

we find

[N ] = −ρFG[vz], (58)

[Q] = −ρFG[vy], (59)

[M] = ρIG[Ψ ]. (60)
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Substituting in (4)–(6) the derivatives ∂uz/∂z, ∂uy/∂z, and ∂ψ/∂z by the expressions
−G−1vz, −G−1vy , and −G−1Ψ according to formulae (54)–(56), respectively, and writing
them at the moments t and t + 	t , we obtain

N− = −FE∞
[
G−1v−

z − νε

1

τε

∫ t

0
e

− t−t ′
τε G−1vz

(
t ′
)

dt ′
]
, (61)

N+ = −FE∞
[
G−1v+

z − νε

1

τε

∫ t+	t

0
e

− t+	t−t ′
τε G−1vz

(
t ′
)

dt ′
]
, (62)

Q− = −KFμ∞
[
G−1v−

y + ψ− − n
1

tε

∫ t

0
e

− t−t ′
tε

(
G−1vy

(
t ′
) + ψ

(
t ′
))

dt ′
]
, (63)

Q+ = −KFμ∞
[
G−1v+

y + ψ+ − n
1

tε

∫ t+	t

0
e

− t+	t−t ′
tε

(
G−1vy

(
t ′
) + ψ

(
t ′
))

dt ′
]
, (64)

M− = IE∞
[
G−1Ψ − − νε

1

τε

∫ t

0
e

− t−t ′
τε G−1Ψ

(
t ′
)

dt ′
]
, (65)

M+ = IE∞
[
G−1Ψ + − νε

1

τε

∫ t+	t

0
e

− t+	t−t ′
τε G−1Ψ

(
t ′
)

dt ′
]
. (66)

Expanding the integrals in (62), (64), and (66) into the Taylor series with respect to the
small parameter 	t and limiting ourselves to the zeroth and first order approximations, we
have

∫ t+	t

0
e

− t+	t−t ′
τε vz

(
t ′
)

dt ′

=
∫ t

0
e

− t−t ′
τε vz

(
t ′
)

dt ′ + vz(t)	t − 	t
1

τε

∫ t

0
e

− t−t ′
τε vz

(
t ′
)

dt ′, (67)

∫ t+	t

0
e

− t+	t−t ′
tε

[
G−1vy

(
t ′
) + ψ

(
t ′
)]

dt ′

=
∫ t

0
e

− t−t ′
tε

[
G−1vy

(
t ′
) + ψ

(
t ′
)]

dt ′ + [
G−1vy

(
t ′
) + ψ

(
t ′
)]

	t

− 	t
1

tε

∫ t

0
e

− t−t ′
tε

[
G−1vy

(
t ′
) + ψ

(
t ′
)]

dt ′, (68)

∫ t+	t

0
e

− t+	t−t ′
τε ψ

(
t ′
)

dt ′

=
∫ t

0
e

− t−t ′
τε ψ

(
t ′
)

dt ′ + ψ(t)	t − 	t
1

τε

∫ t

0
e

− t−t ′
τε ψ

(
t ′
)

dt ′. (69)

Subtracting (61), (63), and (65), respectively, from (62), (64), and (66), accounting for
(67)–(69), and letting 	t to zero, we find

[N ] = −FE∞G−1[vz], (70)

[Q] = −KFμ∞G−1[vy], (71)

[M] = IE∞G−1[Ψ ]. (72)
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From relationships (58)–(60) and (70)–(72) it is possible to find the velocities of two
types of transient waves:

– longitudinal–flexural wave

G(1)
∞ =

(
E∞
ρ

)1/2

, (73)

– and shear wave

G(2)
∞ =

(
Kμ∞

ρ

)1/2

. (74)

Substituting the found velocities (73) and (74) in formulae (58)–(60) and considering, as it
has been already mentioned, the zeroth order terms of the ray series, we have

N = −ρFG(1)
∞ vz, (75)

Q = −ρFG(2)
∞ vy, (76)

M = ρIG(1)
∞ Ψ. (77)

Note that relationships (75)–(77) do not differ from those for an elastic beam, since at the
moment of impact a viscoelastic medium behaves as an elastic medium with the unrelaxed
elastic modulus.

3.2 Ray method for the three-dimensional approach for a viscoelastic beam

The Timoshenko equations (1)–(6) possess one essential drawback, namely, they involve
the shear coefficient K which is not determined experimentally and depends on geometric
parameters of the cross-section of a beam.

In a series of papers (Rossikhin and Shitikova 2007a, 2008, 2012) and in a monograph
(Rossikhin and Shitikova 2011), the authors of this paper have developed a brand new ap-
proach for obtaining hyperbolic sets of equations describing the dynamic behaviour of elas-
tic, viscoelastic and thermoelastic bodies subjected to transient excitations. This approach
is based on three-dimensional dynamic equations of the medium, which a thin body under
consideration is made of, namely, a plate, a shell, a rod of solid cross-section, a thin-walled
beam of open or closed profile, and so on. As this takes place, the theory of discontinuities is
utilised, making it possible to obtain recurrent equations of the ray method and allowing one
to determine the discontinuities in the desired values and their time-derivatives of arbitrary
order, and then to construct the ray series for the desired values, which in its turn, enables
one to solve boundary-value dynamic problems dealing with transient excitations upon thin
bodies. The developed approach eliminates any possibility of appearance of any additional
coefficients like the shear coefficients, which are presented in all Timoshenko-type theo-
ries, and it operates only with constants of the material which the thin body is made of.
Dynamic equations obtained within this approach take rotary inertia and transverse shear
deformations, as well as transverse compression effect into account.

Here we will utilise this approach for determining the zeroth order coefficients of the ray
series for the desired functions and the correct velocities of transient waves of shear for a
viscoelastic beam of solid cross-section.

For this purpose, we write the stress tensor for a viscoelastic medium, considering for-
mulae (32) and (33), as

σij = λ∞
[
1 + n1 �∗

1 (tσ )
]
ul,lδij + μ∞

[
1 − n �∗

1 (tσ )
]
(ui,j + uj,i), (78)
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where summation is carried out over two repeated indices, an index after a comma labels
the derivative with respect to the corresponding coordinate, σij and ui are the stress tensor
and displacement vector components, respectively, x = x1, y = x2, z = x3, and δij is the
Kronecker symbol (i, j = 1,2,3).

Using the procedure applied above to deduce formulae (70)–(72), from relationship (78)
we obtain

[σij ] = λ∞[ul,l]δij + μ∞
([ui,j ] + [uj,i]

)
. (79)

Considering the generalized conditions of compatibility (Rossikhin and Shitikova
2007a),

[ul,l] = −G−1[vl]νl + [ux,x] + [uy,y], (80)

[ui,j ] = −G−1[vi]νj + [ui,x]kj + [ui,y]sj , (81)

distinct from the conditions of compatibility (49)–(51) since they take the transverse defor-
mations into account, which is characteristic for beams, we rewrite relationship (79) in the
form

[σij ] = −λ∞G−1[vz]δij − μ∞G−1
([vi]νj + [vj ]νi

)

+ μ∞
([ui,x]kj + [uj,x]ki + [ui,y]sj + [uj,y]si

)

+ λ∞
([εx] + [εy]

)
δij , (82)

where

[vz] = [vi]νi, [εx] = [ui,x]ki = [ux,x], [εy] = [ui,y]si = [uy,y].
The dynamic condition of compatibility

[σij ]νj = −ρG[vi], (83)

which is obtained from the equation of motion

[σij,j ] = ρvi, (84)

should be added to (80) and (81).
Multiplying (81) sequentially by kikj , sisj , and sikj and neglecting the press of layers

within the front of the surface of strong discontinuity in the direction of the vectors k and s,
i.e. considering that

[σij ]kikj = [σij ]sisj = [σij ]sikj = 0, (85)

we have

[uy,x] = [ux,y] = 0, (86)

(λ∞ + 2μ∞)[εx] + λ∞[εy] = λ∞G−1[vz], (87)

λ∞[εx] + (λ∞ + 2μ∞)[εy] = λ∞G−1[vz]. (88)

From (81) and (82) we find

[εx] = [εy] = G−1 λ∞
2(λ∞ + μ∞)

[vz], (89)
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and accounting for

ν∞ = λ∞
2(λ∞ + μ∞)

,

we have

[εx] = [εy] = ν∞G−1[vz]. (90)

Substituting (89) into (82) and multiplying the resulting equation by νiνj , we find

[σij ]νiνj = −μ∞(3λ∞ + 2μ∞)

λ∞ + μ∞
G−1[vz], (91)

and considering that

E∞ = μ∞(3λ∞ + 2μ∞)

λ∞ + μ∞
,

we obtain

[σij ]νiνj = −E∞G−1[vz]. (92)

Let us multiply (83) by νi , giving

[σij ]νiνj = −ρG[vz], (93)

and eliminate the value [σij ]νiνj from (92) and (93). As a result we obtain the velocity of
the transient longitudinal–flexural wave (73).

Multiplying (82) and (83) by νj ki and ki , and then by νj si and si , respectively, we have

[σij ]νj ki = −μ∞G−1[vx], (94)

[σij ]νj ki = −ρG[vx], (95)

and

[σij ]νj si = −μ∞G−1[vy], (96)

[σij ]νj ki = −ρG[vy]. (97)

Eliminating the value [σij ]νj ki from (94) and (95) and [σij ]νj si from (96) and (97), we
obtain the velocity of the transient shear wave

G(2)
∞ =

(
μ∞
ρ

)1/2

, (98)

on which the shear takes place both along the x and y axes.
It is seen that, despite (74), formula (98) is free from the coefficient K .
Now we will estimate the value (2N∂uy/∂z)|z=τim in (36), which is responsible for

stretching of the median plane of the beam.
Since in further treatment we will utilise one-term ray expansions, relationships (90),

accounting for (54), take the form

uy,y = ux,x = ν∞G(1)
∞

−1
vz = −ν∞uz,z, (99)
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or

vz = ν−1
∞ G(1)

∞ uy,y. (100)

Here velocity G has been substituted by velocity G(1)∞ , since formulae (99) and (100) are
valid only on the longitudinal–flexural waves.

Considering that uy,y at z = τim is the deformation of the buffer of the hight h which
models the transverse deformation of the contact domain during impact, formula (100) can
be rewritten in the form

vz = ν−1
∞ G(1)

∞ (α − uy)/h. (101)

Then the value 2N∂uy/∂z at z = τim, taking into account (101), (55), and (75), takes the
form

2N
∂uy

∂z

∣∣
∣∣
z=τim

= e(α − uy)vy, (102)

where e = 2ρFG(1)∞
2
(G(2)∞ ν∞h)−1.

From the initial conditions (44) it is evident that the value defined by formula (102) has
the second order of smallness, it could be neglected with respect to other values in (36).

As for the value Q, which also enters in (36), for its calculation it is sufficient to integrate
(97) from the right and from the left over the cross-sectional area of the beam and to drop
the brackets. As a result we obtain (76) wherein G(2)∞ is defined by (98).

If we neglect the first term on the right-hand side of (36), responsible for the stretching
of the middle plane of the beam, and substitute the value Q by expression (76), then as a
result we obtain the final form of the equation of motion of the contact domain:

müy + mBu̇y = Fcont, (103)

where B = τ−1
im G(2)∞ and m = 2τimρF is the mass of the contact zone.

3.3 Ray method for the elastic rod

At the moment of impact of a projectile (rod) against a target (beam), shock waves are
generated not only in the beam but in the rod as well: a longitudinal shock wave propagates
along the rod with velocity Gim.

Using the same reasoning for determining the dynamic conditions of compatibility as
above for the viscoelastic beam, we find

[σ ] = −ρimGim[v], −Gim[σ ] = Eim[v], (104)

whence it follows that

Gim =
√

Eim

ρim
. (105)

Behind the front of this wave (a surface of the strong discontinuity), the relationships
for the stress σ− and velocity v− could be obtained using the ray series (Rossikhin and
Shitikova 2007b) as follows:

σ− = −
∞∑

k=0

1

k! [σ,(k)]
(

t − z

Gim

)k

, (106)
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v− = V0 −
∞∑

k=0

1

k! [v,(k)]
(

t − z

Gim

)k

, (107)

where [σ,(k)] = [∂kσ/∂tk] and [v,(k)] = [∂kv/∂tk].
Considering that the discontinuities in the elastic rod remain constant during the process

of the wave propagation, and using the condition of compatibility

Gim

[
∂Z,(k−1)

∂z

]
= −[Z,(k)],

which is obtained from Eq. (57) by substitution of the function Z with Z,(k) = ∂kZ/∂tk , we
have

[
∂σ,(k−1)

∂z

]
= −G−1

im [σ,(k)]. (108)

Accounting for (108), the equation of motion on the wave surface is written in the form

[σ,(k)] = −ρimGim[v,(k)]. (109)

Substituting (109) into (106) yields

σ− = ρimGim

∞∑

k=0

1

k! [v,(k)]
(

t − z

Gim

)k

. (110)

Comparing relationships (110) and (107), we obtain

σ− = ρimGim

(
V0 − v−)

. (111)

At y = 0, expression (111) takes the form

σcont = ρimGim(V0 − vy − α̇), (112)

where σcont = σ−|y=0 is the contact stress.
Using formula (111), it is possible to find the contact force

Fcont = b(V0 − u̇y − α̇), (113)

where b = 2τimaρimGim.
The ray series (106) and (107) are the Taylor series in the vicinity of the wave front

z = Gimt , and that is why they converge at least for the case Gimt − z < 1, which could be
realised in the case of short-time impact process, since in this case a transient wave cannot
propagate far from the contact zone.

3.4 Solution of Eq. (103) by the Laplace transform technique

Let us write Eq. (103) as well as relationships (42) and (113) in the Laplace domain as

mpuy(p + B) = F̄cont, (114)

F̄cont = Ê∞
[
1 − νε�∗

γ

(
τ

γ
ε

)]
(ᾱ − ūy), (115)
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F̄cont = b

(
V0

p
− pᾱ − pūy

)
, (116)

where a bar over a function denotes the Laplace transform of the corresponding function,
and p is a Laplace variable.

In order to find the Laplace transform of the Rabotnov fractional operator �∗
γ (τ

γ
ε )Z(t),

we utilise formulae (39) and (40). As a result we obtain

�∗
γ

(
τ

γ
ε

)
Z(t) = �∗

γ

(
τ

γ
ε

)
Z(t) =

∞∑

n=0

(−1)nτ−γ (n+1)
ε p−γ (n+1)Z̄(p). (117)

If we interpret the series in (117) as an infinitely decreasing geometric progression with
the denominator q = −τ−γ

ε p−γ and the first term a1 = τ−γ
ε p−γ , then the sum of this series

could be written in the form

∞∑

n=0

(−1)nτ−γ (n+1)
ε p−γ (n+1) = τ−γ

ε p−γ

1 − (−τ
−γ
ε p−γ )

= 1

1 + (pτε)γ
. (118)

Considering (118), we have

�∗
γ

(
τ

γ
ε

)
Z(t) = 1

1 + (pτε)γ
Z̄(p), (119)

and hence

F̄cont = Ê∞
[

1 − νε

1 + (pτε)γ

]
(ᾱ − ūy),

or taking into account (38) and the relationship 1 − νε = Ê0Ê
−1∞ , we find

F̄cont = Ê0
1 + (pτσ )γ

1 + (pτε)γ
(ᾱ − ūy), (120)

where Ê0 = E0
2τima

h
is the relaxed elastic modulus of the fractional derivative standard linear

solid model valid within the contact domain.
From relationships (114) and (120) we obtain

ᾱ(p) = V0

p2
−

[
m

b
(p + B) + 1

]
ūy(p). (121)

Now eliminating F̄cont from (114) and (120) and considering (121), we obtain

w̄(p) = V0Ω
2∞(τ−γ

σ + pγ )

p2fγ (p)
, (122)

where Ω2∞ = Ê∞m−1, and

fγ (p) = p2+γ + τ−γ
ε p2 + (

B + Ê∞b−1
)
p1+γ + (

B + Ê0b
−1

)
τ−γ
ε p

+ Ê∞
(
Bb−1 + m−1

)
pγ + Ê0

(
Bb−1 + m−1

)
τ−γ
ε . (123)
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Substituting formulas (121) and (122) into (116) yields

F̄cont(p) = V0Ê∞(p + B)(τ−γ
σ + pγ )

pfγ (p)
. (124)

Besides, it is possible to find the value ᾱ(p), if we exclude the value w̄(p) defined by
(122) from Eq. (121). As a result we obtain

ᾱ(p) = V0

p2

{
1 −

[
m

b
(p + B) + 1

]
Ω2∞(τ−γ

σ + pγ )

fγ (p)

}
. (125)

Now we will carry out the inverse transformation of formula (124). For this purpose, first
we will investigate the roots of the characteristic equation

fγ (p) = 0. (126)

Let us multiply Eq. (126) by τ γ
ε , represent p in the geometric form

p = reiψ, (127)

and introduce a new variable x = (rτε)
γ . As a result, Eq. (126) can be rewritten in the form

r2
[
xei(2+γ )ψ + e2iψ

] + r
[(

B + Ê∞b−1
)
xei(1+γ )ψ + (

B + Ê0b
−1

)
eiψ

]

+ (
Bb−1 + 2m−1

)(
Ê∞xeiγψ + Ê0

) = 0. (128)

Separating the real and imaginary parts in (128), we have

r2a1 + ra2 + a3 = 0, (129)

r2b1 + rb2 + b3 = 0, (130)

where

a1 = cos 2ψ + x cos(2 + γ )ψ,

b1 = sin 2ψ + x sin(2 + γ )ψ,

a2 = (
B + Ê0b

−1
)[

cosψ + x
(
B + Ê∞b−1

)
cos(1 + γ )ψ

]
,

b2 = (
B + Ê0b

−1
)[

sinψ + x
(
B + Ê∞b−1

)
sin(1 + γ )ψ

]
,

a3 = (
Bb−1 + 2m−1

)
(Ê0 + xÊ∞ cosγψ),

b3 = (
Bb−1 + 2m−1

)
xÊ∞ sinγψ.

First, we fix the angle π
2 ≤ ψ ≤ π in Eqs. (129) and (130), and then eliminate r2. As a

result we obtain

r = a1b3 − a3b1

a2b1 − a1b2
. (131)

Substituting (131) into (129) yields

(a3b1 − a1b3)
2a1 − (a2b1 − a1b2)(a3b1 − a1b3)a2 + (a2b1 − a1b2)

2a3 = 0. (132)
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From Eq. (132) at each fixed angle ψ from the segment π
2 ≤ ψ ≤ π , we find the values xi

(i = 1,2, . . . ), and then we substitute the chosen ψ with the found magnitude of xi in Eq.
(131), which allows us to find the corresponding modulus ri (i = 1,2, . . . ). Knowing the
values of xi and ri , it is possible to determine (τ γ

ε )i = xir
−γ

i . The set of values involving
the angle ψ , radii ri , and parameters (τ γ

ε )i completely defines the roots of the characteristic
equation (126).

In order to clarify the number of characteristic equation roots, we consider their asymp-
totic behaviour.

3.4.1 The case τ
γ
ε → 0

Suppose that τ γ
ε → 0 (τ−γ

ε → ∞). In this case, the characteristic equation (126) takes the
form

fγ 0(p0) = p2
0 + (

B + Ê0b
−1

)
p0 + Ê0

(
Bb−1 + m−1

) = 0, (133)

whence it follows that

p0i = (p0)1,2 = −1

2

(
B + Ê0b

−1
) ± 1

2

√(
B − Ê0b−1

)2 − 8Ê0m−1. (134)

3.4.2 The case τ
γ
ε = ε

Now we suppose that the relaxation time of the system is small, i.e. τ γ
ε = ε, where ε is a

small value. We will seek the solution of the characteristic equation (126) in the form

pi = p0i + εχi, (135)

where χi is an unknown function for now.
Substituting (135) into (126) and ignoring the values of the order higher than ε, we find

χi = −fγ∞(p0i )

f ′
γ 0(p0i )

, (136)

where f ′
γ (p) denotes the derivative of the function fγ (p) with respect to p,

f ′
γ (p0i ) = 2p0i + B + Ê0b

−1,

fγ∞ = p
2+γ

0i + (
B + Ê∞b−1

)
p

1+γ

0i + Ê∞
(
Bb−1 + 2m−1

)
p

γ

0i .

3.4.3 The case τ
γ
ε → ∞

Suppose that τ γ
ε → ∞ (τ−γ

ε → 0). In this case, the characteristic equation (126) takes the
form

fγ∞(p∞) = p2+γ
∞ + (

B + Ê∞b−1
)
p1+γ

∞ + Ê∞
(
Bb−1 + 2m−1

)
pγ

∞ = 0. (137)

From Eq. (137) we find

p∞i = (p∞)1,2 = −1

2

(
B + Ê∞b−1

) ± 1

2

√(
B − Ê∞b−1

)2 − 8Ê∞m−1. (138)
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3.4.4 The case τ
−γ
ε = ε

Now we suppose that the relaxation time of the system is large, i.e. τ−γ
ε = ε, where ε is a

small value. We will seek the solution of the characteristic equation (126) in the form

pi = p∞i + εηi . (139)

Substituting (139) into Eq. (126) and ignoring the values of the order higher than ε, we
find

ηi = − fγ 0(p∞i )

f ′
γ∞(p∞i )

, (140)

where

fγ 0(p∞i ) = p2
∞i + (

B + Ê0b
−1

)
p∞i + Ê0

(
Bb−1 + 2m−1

)
,

f ′
γ∞(p∞i ) = (2 + γ )p

1+γ

∞i + (
B + Ê∞b−1

)
(1 + γ )p

γ

∞i + (
Bb−1 + 2m−1

)
γp

γ−1
∞i .

On the ground of the above asymptotic formulas, it could be assumed that the character-
istic equation (126) possesses two complex conjugate roots, which we will represent in the
following form:

p1,2 = re±iψ = −κ ± iω. (141)

Further, it is convenient to rewrite F̄cont(p) defined by (124) in the form

F̄cont(p) = 1

p
F̄0(p), (142)

where

F̄0(p) = V0
gγ (p)

fγ (p)
,

gγ (p) = Ê∞p1+γ + Ê0τ
−γ
ε p + Ê∞Bpγ + Ê0τ

−γ
ε B.

(143)

The function F0(t) in the time domain is governed by the Mellin–Fourier inversion for-
mula

F0(t) = 1

2π i

∫ c+i∞

c−i∞
F̄0(p)ept dp. (144)

To calculate the integral (144), it is necessary to define all singular points of the complex
function F̄cont(p). This multi-valued function possesses the branch points at p = 0 and p =
∞ and the simple poles at the same magnitudes of p = pk which make the denominator in
Eq. (143) zero, i.e. they are the roots of the characteristic equation (126).

The inversion theorem is applicable to multi-valued functions possessing branch points
only on the first sheet of the Riemann surface, i.e. when 0 < |argp| < π . Thus a closed
contour of integration should be chosen in the form presented in Fig. 2. Considering Jordan
lemma and applying the main theorem of the theory of residues, we rewrite the integral
(144) in the following form:

F0(t) = 1

2π i

∫ ∞

0

[
F̄0

(
se−iπ

) − F̄0

(
seiπ

)]
e−st ds +

∑

k

res
[
F̄0(pk)e

pkt
]
, (145)
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Fig. 2 Closed contour of
integration

where the summation is carried out over all isolated singular points (poles).
Knowing the function F0(t), it is possible to determine the contact force Fcont(t) via the

following formula:

Fcont(t) =
∫ t

0
F0

(
t ′
)

dt ′. (146)

Since the roots of the characteristic equation (126) are complex conjugates and are de-
fined by (141), Eq. (145) is reduced to

F0(t) = A0(t) + A exp(−κt) cos(ωt + φ), (147)

where

A0(t) =
∫ ∞

0
B(s)e−st ds,

B(s) = (s − B)[Y Refγ (seiπ ) − X Imfγ (seiπ )]V0π
−1

[Refγ (seiπ )]2 + [Imfγ (seiπ )]2
,

Aj = 2V0

√[N1(pj )]2 + [N2(pj )]2

[Ref ′
γ (pj )]2 + [Imf ′

γ (pj )]2
, A1 = A2 = A,

tanφj = Ref ′
γ (pj )Regγ (pj ) + Imf ′

γ (pj ) Imgγ (pj )

Imf ′
γ (pj )Regγ (pj ) − Ref ′

γ (pj ) Imgγ (pj )
,

tanφ1 = − tanφ2 = tanφ,

Refγ

(
seiπ

) = τ−γ
ε

{
s2

[
(sτε)

γ cos(2 + γ )π + 1
] + s

[
(sτε)

γ
(
B + Ê∞b−1

)
cos(1 + γ )π

− (
B + Ê0b

−1
)] + (

Bb−1 + 2m−1
)[

Ê∞(sτε)
γ cosγπ + Ê0

]}

= Refγ

(
se−iπ

)
,

Imfγ

(
seiπ

) = τ−γ
ε

[
s2(sτε)

γ sin(2 + γ )π + s(sτε)
γ
(
B + Ê∞b−1

)
sin(1 + γ )π

+ (
Bb−1 + 2m−1

)
Ê∞(sτε)

γ sinγπ
] = − Imfγ

(
se−iπ

)
,

Ref ′
γ (p1) = (2 + γ )r1+γ cos(1 + γ )ψ + 2rτ−γ

ε cosψ + (1 + γ )
(
B + Ê∞b−1

)
r cosγψ

+ γ Ê∞
(
Bb−1 + 2m−1

)
rγ−1 cos(γ − 1)ψ + (

B + Ê0b
−1

)
τ−γ
ε = Ref ′

γ (p2),

Imf ′
γ (p1) = (2 + γ )r1+γ sin(1 + γ )ψ + 2rτ−γ

ε sinψ + (1 + γ )
(
B + Ê∞b−1

)
r sinγψ
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+ γ Ê∞
(
Bb−1 + 2m−1

)
rγ−1 sin(γ − 1)ψ = − Imf ′

γ (p2),

X = Ê0τ
−γ
ε + Ê∞sγ cosπγ, Y = Ê∞sγ sinπγ,

N1(pj ) = Ref ′
γ (pj )Regγ (pj ) + Imf ′

γ (pj ) Imgγ (pj ), N1(p1) = N1(p2),

N2(pj ) = Imf ′
γ (pj )Regγ (pj ) − Ref ′

γ (pj ) Imgγ (pj ), N2(p1) = −N2(p2),

Regγ (p1) = Ê∞r1+γ cos(1 + γ )ψ + Ê0τ
−γ
ε r cosψ + BÊ∞rγ cosγψ

+ BÊ0τ
−γ
ε = Regγ (p2),

Imgγ (p1) = Ê∞r1+γ sin(1 + γ )ψ + Ê0τ
−γ
ε r sinψ + BÊ∞rγ sinγψ = − Imgγ (p2).

The first term in Eq. (147) defines the drift of the equilibrium position, while the second
term governs damping vibrations around the drifting equilibrium position.

According to Eq. (146), to determine the function Fcont(t), it is needed to integrate the
function (147) with respect to t from 0 to t . As a result we obtain

Fcont(t) =
∫ ∞

0
B(s)

(
1 − e−st

)
ds + A

κ2 + ω2

{
κ sinφ + ω cosφ

− e−κt
[
κ sin(ωt + φ) + ω cos(ωt + φ)

]}
, (148)

or

Fcont(t) =
∫ ∞

0
B(s)

(
1 − e−st

)
ds

+ A√
κ2 + ω2

[
sin(φ + φ0) − e−κt sin(ωt + φ + φ0)

]
, (149)

where

tanφ0 = ω

κ
.

The dimensionless time t∗ = ωt dependence of the dimensionless contact force F ∗
cont =

Fcont

√
κ2 + ω2/A is presented in Fig. 3 for different magnitudes of the fractional parameter

γ which are indicated by figures near the corresponding curves, wherein γ = 0 and 1 are in
compliance with a pure elastic case and conventional viscoelastic case, respectively. Figure 3
shows that a decrease in the fractional parameter results in the decrease of both the maximum
of the contact force and the duration of contact.

4 Conclusion

The problem on low-velocity impact of a long thin elastic rod with a flat end upon an infinite
viscoelastic beam has been considered. To construct the solution outside the contact zone,
two approaches have been used. The first one is based on the hyperbolic set of Timoshenko-
type equations describing the dynamic behaviour of a viscoelastic beam, the damping fea-
tures of which are defined by a standard linear solid model. The second approach is based
on three-dimensional dynamic equations describing the behaviour of a viscoelastic medium,
the properties of which are governed by the standard linear solid model with ordinary deriva-
tives.
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Fig. 3 Dimensionless time
dependence of the dimensionless
contact force

At the moment of impact, shock waves (surfaces of strong discontinuity) are generated
both in the impactor and target, the influence of which on the contact domain has been
analysed by the theory of discontinuities. It has been considered that the contact zone moves
like a rigid whole under the action of the contact force and longitudinal and transverse forces
applied to the boundary of the contact region, which were obtained on the basis of one-term
ray expansions. During the impact process, decrosslinking occurs within the domain of the
contact of the beam with the rod, resulting in more free displacements of molecules with
respect to each other, and finally in the decrease of the beam material viscosity in the contact
zone. This circumstance has allowed us to describe the behaviour of the beam material
within the contact domain by the standard linear solid model involving fractional derivatives
because the variation in the fractional parameter (the order of the fractional derivative) has
enabled us to control the viscosity of the beam material.

Both approaches lead to the same results, the only difference being that within the first
approach the velocity of the transient shear wave involves a certain shear coefficient which
is not determined experimentally and depends on geometric form of beams’ cross-section,
while within the second approach this velocity is free from the shear coefficient and coin-
cides with that for the shear wave in 3D medium. From the physical point of view, the second
approach is preferable to the first one. Moreover, the second approach takes the rotary iner-
tia, transverse shear deformations along both transverse axes of the beam, i.e. it allows one
to consider the changes in the beam thickness.

Due to the short duration of contact interaction, the reflected waves were not taken into
account, since it was assumed that the impactor bounced from the target before the reflected
waves had time to reach the place of contact. Finally, the contact force has been determined
analytically via the Laplace transform technique.
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Appendix

In the case when a mathematical pendulum is used for experimental measurement of internal
friction in a beam, first of all operators μ̃ and μ̃−1 can be determined, while the other
operators are expressed in terms of them and the constant K∞.

Thus, when operator K̃ = K∞ and operator μ̃ is known and defined by

μ̃ = μ∞
[
1 − νε

μ �∗
1

(
τ ε
μ

)]
, (150)
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one needs to find the operator Ẽ.
In this case, we will utilise the formula

Ẽ = 9K∞μ̃

3K∞ + μ̃
. (151)

First, we write the operator 3K∞ + μ̃ in the form

3K∞ + μ̃ = (3K∞ + μ∞)
[
1 − Mε �∗

1

(
τ ε
μ

)]
, (152)

where Mε = μ∞νε
μ(3K∞ + μ∞)−1.

In order to find an operator inverse to (152), let us introduce it in the form

(3K∞ + μ̃)−1 = 1

3K∞ + μ∞

[
1 + Mσ �∗

1 (tσ )
]
, (153)

where Mσ and tσ are unknown constants for now.
Considering that (3K∞ + μ̃)(3K∞ + μ̃)−1 = 1, we obtain

[
1 − Mε �∗

1

(
τ ε
μ

)][
1 + Mσ �∗

1 (tσ )
] = 1. (154)

Opening the brackets in (154) and considering formula (18), we find

Mσ �∗
1 (tσ )

(
1 + Mε

tσ

τ ε
μ − tσ

)
− Mε �∗

1

(
τ ε
μ

)
(

1 + Mσ

τε
μ

τ ε
μ − tσ

)
= 0. (155)

Equating to zero the expression in each bracket in (155) yields

{
τ ε
μ − tσ + tσ Mε = 0,

τ ε
μ − tσ + τ ε

μMσ = 0.
(156)

From the set of Eqs. (156) we find

Mσ = Mε

1 − Mε

, tσ = τ ε
μ

1 − Mε

, (157)

whence the known equality follows

τ ε
μ

tσ
= Mε

Mσ

. (158)

Finally, we can determine the operator Ẽ from the following relationship:

Ẽ = E∞
[
1 − νε

μ �∗
1

(
τ ε
μ

)][
1 + Mσ �∗

1 (tσ )
]
. (159)

Opening the brackets in (159) and considering formula (18), we find

Ẽ = E∞
[

1 − Mσ

3K∞
μ∞

�∗
1 (tσ )

]
. (160)
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Substituting the operator �∗
1 (tσ ) in (160) by the operator �∗

γ (tγσ ), we obtain the desired
operator Ẽ which has the form

Ẽ = E∞
[

1 − Mσ

3K∞
μ∞

�∗
γ

(
tγσ

)
]
, (161)

in so doing
(

tσ

τ ε
μ

)γ

= Mσ

Mε

. (162)

Thus, in the case under consideration, the operator Ẽ = E∞[1 − νε �∗
γ (τ γ

ε )] should be
replaced by operator (161).
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