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Abstract – The problem on low-velocity impact of a long thin
elastic rod with a flat end upon an infinite Timoshenko-type beam, the
viscoelastic features of which are exhibited only within the contact
domain and are governed by the fractional derivative standard linear
solid model, is formulated. The part of the beam being out of the
contact region is considered to be elastic, and its behavior is described
by a set of equations taking the rotary inertia and transverse shear
deformation into account. At the moment of impact, shock waves are
generated both in the impactor and target, the influence of which on
the contact domain is considered via the theory of discontinuities. The
contact zone moves like a rigid whole under the action of the contact
force and transverse forces applied to the boundary of the contact
region, which are obtained on the basis of one-term ray expansions.
The contact force has been determined analytically via the Laplace
transform technique.

Keywords–Impact response, hereditarily elastic Timoshenko-like
beam, fractional derivative standard linear solid model, ray method,
dynamic conditions of compatibility, Laplace transform.

I. INTRODUCTION

The problems connected with the analysis of the shock
interaction of thin bodies (rods, beams, plates, and shells) with
other bodies have widespread application in various fields of
science and technology. The physical phenomena involved in
the impact event include structural responses, contact effects
and wave propagation. These problems are topical not only
from the point of view of fundamental research in applied
mechanics, but also with respect to their applications. Because
these problems belong to the problems of dynamic contact in-
teraction, their solution is connected with severe mathematical
and calculation difficulties. To overcome this impediment, a
rich variety of approaches and methods have been suggested,
and the overview of current results in the field can be found
in recent state-of-the-art articles [1]–[4].

In recent decades fractional calculus (integral and differ-
ential operators of noninteger order), which has a long history
[5], has been the object of ever increasing interest in many
branches of natural science, and of engineering interest as
well. Thus, Rossikhin and Shitikova [3] have reviewed the

application of fractional calculus to dynamic problems of linear
and nonlinear hereditary mechanics of solids, among them, the
problems of dynamic contact interaction. Two approaches have
been discussed for studying the impact response of fractionally
damped systems subjected to falling impactors. The first one
is based on the assumption that viscoelastic properties of
the target manifest themselves only in the contact domain,
while the other part of the target remains elastic one. This
approach results in defining the contact force and the local
penetration of target by an impactor from the set of linear
fractional differential equations. The second approach is the
immediate generalization of the Timoshenko approach utilizing
the viscoelastic analog of Hertz’s contact law by substituting
elastic constants by the corresponding viscoelastic operators.
This approach results in the nonlinear functional equation
for determining the contact force or the impactor’s relative
displacement.

In the present paper, the analytical approach proposed
in [2], [6] for the analysis of the dynamic response of the
elastic isotropic Timoshenko beam subjected to the impact
by elastic long rod has been extended to the problem of the
dynamic response of a hereditarily elastic Timoshenko-like
beam impacted by an elastic prismatic long rod of a rectangular
cross-section. As this takes place, the impact response of
thin isotropic beams is investigated under the assumption that
the viscosity of the target exhibits only within the contact
domain, while out of the contact region the beam remains to be
elastic with a non-relaxed elastic modulus, in so doing viscous
features are described by the fractional derivative standard
linear solid model.

II. PROBLEM FORMULATION

Let a long prismatic elastic rod of a rectangular cross-
section with the dimensions 2τim and a move along the z-
normal with the velocity V0 towards an isotropic rectangular
Timoshenko beam of infinite extent (this assumption is intro-
duced due to the short duration of contact interaction in order
to ignore reflected waves) with width a and thickness h, in so
doing the normal z is erected at the middle of the beam.

The beam out of the contact zone is considered to be elas-
tic, while within the contact domain its microstructure changes
and it gains viscoelastic properties, which are described by the
generalized fractional-derivative standard linear solid model.
For the projectile with a flat end, such a scheme could be
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Fig. 1. Scheme of the shock interaction of a plain-end impactor with a target

realized if a viscoelastic buffer involving two springs and a
viscous damper is embedded by its low end in the target
(Figure 1).

Thus, the rod falls vertically upon the target. Impact occurs
at t = 0 at the origin of the coordinate system x, y, z.
At the moment of impact, shock waves (surfaces of strong
discontinuity) are generated in the beam and in the rod, which
then propagate along the projectile and the target with the
velocities of the transient waves.

Further we will assume that during the process of impact
the transverse forces and transverse shear deformations dom-
inate in the stress-strain state of the beam within the vicinity
of the contact zone. Besides, the elastic rod and the beam
are considered to be somewhat extended, so that the waves
reflected from rod’s free edge and beam’s boundary have
had no time to return to the contact region to terminate the
collision.

III. GOVERNING EQUATIONS

The dynamic behavior of an elastic homogeneous prismatic
beam with due account for the rotary inertia and transverse
shear deformations is described by the following set of equa-
tions [2], [6]:

∂Qr
∂z

= ρAẆ , (1)

∂M

∂z
−Q = −ρIβ̇, (2)

Q̇r = Kµ∞A (∂W/∂z − β) , (3)

Ṁ = −E∞I∂β/∂z, (4)

where M is the bending moment, Q is the shear force, W =
ẇ is the transverse displacement velocity of a beam central
axis (velocity of deflection), β is the angular velocity of a
cross-section about the z-axis which is perpendicular to the

plane of flexure y − z (the axes z and y are directed along
the beam axis and vertically down, respectively), E∞ and µ∞
are the nonrelaxed magnitudes of the elastic and shear moduli
corresponding to the elastic beam, respectively, ρ is the density,
K is the shear coefficient, A and I are the cross-sectional
area and the moment of inertial with respect to the z-axis,
respectively, and an overdot denotes the time derivative.

To equations (1) to (4), one should add equations describing
the dynamic behavior of the elastic rod (impactor)

∂σ

∂z
= ρimv̇, (5)

σ̇ = Eim
∂v

∂z
, (6)

where σ is the stress, v is the velocity, ρim and Eim are
the density and Young’s modulus of impactor’s material,
respectively, as well as the equation of motion of the contact
domain of the length 2τim (Figure 1)

2τimAρẅ = 2Q|z=τim + Fcont, (7)

and the equation for the contact force which could be written
as the fractional derivative standard linear solid constitutive
relationship

Fcont + τγε D
γFcont = E0 [(α− w) + τγσD

γ(α− w)] , (8)

wherein α and w are the displacements of the upper and lower
ends of the buffer, respectively, in so doing the displacement w
is equal to the displacement of the beam in the place of contact
(Figure 1), γ (0 < γ ≤ 1) is the fractional parameter, τε and τσ
are the relaxation and retardation (creep) times, respectively,
in so doing

τγε τ
−γ
σ = E0E

−1
∞ , (9)

E∞ and E0 are the non-relaxed (instantaneous modulus of
elasticity, or the glassy modulus) and relaxed elastic (prolonged
modulus of elasticity, or the rubbery modulus) moduli, respec-
tively,

DγFcont =
d
dt

t∫
0

Fcont(t− t′)
Γ (1− γ)t′γ

dt′ (10)

is the Riemann-Liouville fractional derivative, and Γ (1 − γ)
is the Gamma-function.

The above equations are subjected to the initial conditions

α|t=0 = w|t=0 = ẇ|t=0 = 0, α̇|t=0 = V0, (11)

as well as the boundary condition

∂W/∂z|z=±τim = 0. (12)

IV. METHODS OF SOLUTION

To find the solution of the stated problem, two methods are
used, namely: the ray method and Laplace transform technique.
The ray method is applied for constructing an approximate
solution within the elastic part of the beam from the surface
of strong discontinuity upto the boundary of the contact region,
as well as for finding the exact solution within the disturbed
domain of the elastic rod. Within the contact domain, the
Laplace transformation method is utilized to determine the
contact force.
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A. A Ray Method for the Elastic Part of the Beam

To find the solution outward the contact region, i.e., for
the elastic part of the target, we shall interpret a shock wave
in the beam (surface of strong discontinuity) as a layer of
the thickness δ, within which the desired function Z changes
from the magnitude Z− to the magnitude Z+ but remaining a
continuous function [2]. Then integrating equations from (1) to
(4) over the layer’s thickness from −δ/2 to δ/2, with δ tending
to zero, and considering that inside the layer the condition of
compatibility [7] is fulfilled in the form of

Ż = −G ∂Z

∂r
+
δZ

δt
, (13)

where G is the normal velocity of the wave surface, and δ/δt
is the δ-derivative with respect to time [8], we find the dynamic
conditions of compatibility

[Q] = − ρAG[W ], −G[Q] = Kµ∞A[W ], (14)

[M ] = − ρI G[β], −G[M ] = E∞I[β], (15)

where [Z] = Z+ − Z−.

Eliminating the values [Q] and [M ] from equations (14)
and (15), respectively, we define the velocities of the quasi-
transverse G(2)

∞ and quasi-longitudinal G(1)
∞ waves as follows

G(2)
∞ =

(
Kµ∞
ρ

)1/2

, G(1)
∞ =

(
E∞
ρ

)1/2

. (16)

If the contact spot is considered to be a rigid body, then
the values Q ≈ [Q] and W ≈ [W ], which are connected by
the relationship

Q = − ρAG(2)
∞W, (17)

are the dominating values in the vicinity of the contact spot
and on its boundary [2].

B. Ray Method for the Elastic Rod

At the moment of impact of a projectile (rod) against a
target (beam), the shock waves are generated not only in the
beam but in the rod (a longitudinal shock wave) as well, which
propagates along the rod with the velocity Gim.

Using the same reasoning for determining the dynamic
conditions of compatibility as we have adopted above for the
elastic beam, we find

[σ] = − ρimGim[v], −Gim[σ] = Eim[v], (18)

whence it follows that

Gim =

√
Eim

ρim
. (19)

Behind the front of this wave (a surface of the strong
discontinuity), the relationships for the stress σ− and velocity
v− could be obtained using the ray series [2]

σ− = −
∞∑
k=0

1
k!
[
σ,(k)

](
t− z

Gim

)k
, (20)

v− = V0 −
∞∑
k=0

1
k!
[
v,(k)

](
t− z

Gim

)k
, (21)

where σ,(k) = ∂k/∂tk and v,(k) = ∂k/∂tk.

Considering that the discontinuities in the elastic rod re-
main constant during the process of the wave propagation, and
using the condition of compatibility

Gim

[
∂Z,(k−1)

∂z

]
= −[Z,(k)],

which is obtained from equation (13) by substitution of the
function Z with Z,(k) = ∂kZ/∂tk, we have[

∂σ,(k−1)

∂z

]
= −G−1

im [σ,(k)]. (22)

With due account for (22), the equation of motion on the
wave surface is written in the form

[σ,(k)] = −ρimGim[v,(k)]. (23)

Substituting (23) in (20) yields

σ− = ρimGim

∞∑
k=0

1
k!
[
v,(k)

](
t− z

Gim

)k
. (24)

Comparing relationships (24) and (21), we obtain

σ− = ρimGim(V0 − v−). (25)

At z = 0, expression (25) takes the form

σcont = ρimGim(V0 −W − α̇), (26)

where σcont = σ−|z=0 is the contact stress.

Using formula (26), it is possible to find the contact force

Fcont = b(V0 − ẇ − α̇), (27)

where b = 2τimaρimGim.

C. Determination of the Contact Force by the Laplace Trans-
form Technique

The contact force can be determined not only by formula
(27) but according to the following equation [9] as well:

Fcont = E∞(α−w)−4E
t∫

0

3γ
(
− t− t

′

τε

)
[α(t′)−w(t′)]dt′,

(28)
where 4E = E∞ −E0 is the defect of the modulus, i.e., the
value characterizing the decrease in the elastic modulus from
its nonrelaxed value to its relaxed value, and

3γ
(
− t

τε

)
=
tγ−1

τγε

∞∑
n=0

(−1)n(t/τε)γn

Γ [γ(n+ 1)]
(29)

is the fractional exponential function suggested by Rabotnov
[10].

Really, we could rewrite equation (8) in the form

Fcont = E0
1 + τγσD

γ

1 + τγε Dγ
(α− w), (30)
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or with due account for formula (9) in the form

Fcont = E∞
E−1
∞ E0 + τγε D

γ

1 + τγε Dγ
(α− w). (31)

Adding and subtracting the unit in the numerator of equa-
tion (31) yields

Fcont = E∞(α− w)−4E 3∗γ (τγε ) (α− w), (32)

where
3∗γ (τγε ) =

1
1 + τγε Dγ

is the dimensionless Rabotnov operator [11].

Considering that DγIγ = 1, we could represent the
operator 3∗γ (τγε ) as

3∗γ (τγε ) =
Iγτ−γε

1−
(
−Iγτ−γε

) , (33)

where

Iγx(t) =

t∫
0

(t− t′)γ−1

Γ (γ)
x(t′)dt′ (34)

is the fractional integral.

If we suppose that the right part of formula (33) is the
sum of an infinite decreasing geometrical progression, the
denominator of which is equal to d = −Iγτ−γε , then 3∗γ (τγε )
could be represented as

3∗γ (τγε ) =
∞∑
n=0

(−1)nτ−γ(n+1)
ε Iγ(n+1), (35)

or with due account for equation (34), we find

3∗γ (τγε )x(t) =

t∫
0

3γ
(
− t′

τε

)
x(t− t′)dt′. (36)

If we change the subtrahend in equation (32) by formula
(36) with x(t) = α(t)− w(t), then we are led to relationship
(28).

Equations (27), (28) and (7) rewritten with due account for
formula (17)

Mẅ +MBẇ = Fcont, (37)

where B = τ−1
im G

(2)
∞ and M = 2τimρA is the mass of the

contact region, provide a closed set of three equations in terms
of three unknowns: Fcont, w, and α.

Now applying Laplace transformation to equations (37),
(30), and (27), we have

Mpw̄(p+B) = F̄cont, (38)

F̄cont = E0
1 + (pτσ)γ

1 + (pτε)γ
(ᾱ− w̄) , (39)

F̄cont = b

(
V0

p
− pᾱ− pw̄

)
, (40)

where a bar over a value denotes the Laplace transform the
given value, and p is the Laplace variable.

Eliminating F̄cont from equations (38) and (40), we find

ᾱ(p) =
V0

p2
−
[
M

b
(p+B) + 1

]
w̄. (41)

Now eliminating F̄cont from equations (38) and (39) and
considering (41), we obtain

w̄(p) =
V0Ω2

∞(τ−γσ + pγ)
p2fγ(p)

, (42)

where Ω2
∞ = E∞M

−1, and

fγ(p) = p2+γ + τ−γε p2 + (B + E∞b
−1)p1+γ

+ (B + E0b
−1)τ−γε p+ E∞(Bb−1 +M−1)pγ

+ E0(Bb−1 +M−1)τ−γε . (43)

Substituting formulas (41) and (42) in (40) yields

F̄cont(p) =
V0E∞(p+B)(τ−γσ + pγ)

pfγ(p)
. (44)

Besides, it is possible to find the value ᾱ(p), if we exclude
the value w̄(p) defined by (42) from equation (41). As a result,
we obtain

ᾱ(p) =
V0

p2

{
1−

[
M

b
(p+B) + 1

]
Ω2
∞(τ−γσ + pγ)
fγ(p)

}
. (45)

Now we will carry out the inverse transformation of
formula (44). For this purpose, first we will investigate the
roots of the characteristic equation

fγ(p) = 0. (46)

Let us multiply equation (46) by τγε , represent p in the
geometrical form

p = reiψ (47)

and introduce a new variable x = (rτε)γ . As a result, equation
(46) could be rewritten in the form

r2
[
xei(2+γ)ψ + e2iψ

]
+ r

[
(B + E∞b

−1)xei(1+γ)ψ + (B + E0b
−1)eiψ

]
+

(
Bb−1 + 2M−1

) (
E∞xe

iγψ + E0

)
= 0. (48)

Separating the real and imaginary parts in (48), we have

r2a1 + ra2 + a3 = 0, (49)

r2b1 + rb2 + b3 = 0, (50)

where

a1 = cos 2ψ + x cos(2 + γ)ψ,
b1 = sin 2ψ + x sin(2 + γ)ψ,
a2 = (B + E0b

−1)[cosψ + x(B + E∞b
−1) cos(1 + γ)ψ],

b2 = (B + E0b
−1)[sinψ + x(B + E∞b

−1) sin(1 + γ)ψ],
a3 =

(
Bb−1 + 2M−1

)
(E0 + xE∞ cos γψ),

b3 =
(
Bb−1 + 2M−1

)
xE∞ sin γψ.
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First we fix the angle π
2 ≤ ψ ≤ π in equations (49) and

(50), and then eliminate r2. As result, we obtain

r =
a1b3 − a3b1
a2b1 − a1b2

. (51)

Substituting (51) in (49) yields

(a3b1 − a1b3)2a1 − (a2b1 − a1b2)(a3b1 − a1b3)a2

+ (a2b1 − a1b2)2a3 = 0. (52)

From equation (52) at each fixed angle ψ from the segment
π
2 ≤ ψ ≤ π, we could find the values xi (i = 1, 2, ...), and then
we substitute the chosen ψ with the found magnitude of xi in
equation (51), what allows us to find the corresponding module
ri (i = 1, 2, ...). Knowing the values of xi and ri, it is possible
to determine (τγε )i = xir

−γ
i . The set of values involving the

angle ψ, radii ri, and parameters (τγε )i completely defines the
roots of the characteristic equation (46).

In order to clarify the number of characteristic equation
roots, we consider their asymptotic behavior.

1) The case τγε → 0: Suppose that τγε → 0 (τ−γε → ∞).
In this case, the characteristic equation (46) takes the form

fγ0(p0) = p2
0+(B+E0b

−1)p0+E0(Bb−1+M−1) = 0, (53)

whence it follows that

p0i = (p0)1,2 = − 1
2

(B + E0b
−1)

± 1
2

√
(B − E0b−1)2 − 8E0M−1. (54)

2) The case τγε = ε: Now we suppose that the relaxation
time of the system is a small value, i.e. τγε = ε, where ε is
a small value. We will seek the solution of the characteristic
equation (46) in the form:

pi = p0i + εχi, (55)

where χi is yet unknown function.

Substituting (55) in (46) and ignoring the values of the
order higher than ε, we find

χi = − fγ∞(p0i)
f ′γ0(p0i)

, (56)

where f ′γ(p) denotes the derivative of the function fγ(p) with
respect to p,

f ′γ(p0i) = 2p0i +B + E0b
−1,

fγ∞ = p2+γ
0i + (B+ E∞b

−1)p1+γ
0i + E∞(Bb−1+ 2M−1)pγ0i.

3) The case τγε →∞: Suppose that τγε →∞ (τ−γε → 0).
In this case, the characteristic equation (46) takes the form

fγ∞(p∞) = p2+γ
∞ + (B + E∞b

−1)p1+γ
∞

+ E∞(Bb−1 + 2M−1)pγ∞ = 0. (57)

From equation (57) we find

p∞i = (p∞)1,2 =− 1
2

(B + E∞b
−1)

± 1
2

√
(B − E∞b−1)2 − 8E∞M−1. (58)

4) The case τ−γε = ε: Now we suppose that the relaxation
time of the system is a large value, i.e. τ−γε = ε, where ε is
a small value. We will seek the solution of the characteristic
equation (46) in the form:

pi = p∞i + εηi. (59)

Substituting (59) in equation (46) and ignoring the values
of the order higher than ε, we find

ηi = − fγ0(p∞i)
f ′γ∞(p∞i)

, (60)

where

fγ0(p∞i) = p2
∞i + (B + E0b

−1)p∞i + E0(Bb−1 + 2M−1),

f ′γ∞(p∞i) = (2 + γ)p1+γ
∞i + (B + E∞b

−1)(1 + γ)pγ∞i

+(Bb−1 + 2M−1)γpγ−1
∞i .

On the ground of the above asymptotic formulas, it could
be assumed that the characteristic equation (46) possesses
two complex conjugate roots, which we will represent in the
following form:

p1,2 = re±iψ = −α± iω. (61)

Further it is convenient to rewrite F̄cont(p) defined by (44)
in the form

F̄cont(p) =
1
p
F̄0(p), (62)

where
F̄0(p) = V0

gγ(p)
fγ(p)

, (63)

gγ(p) = E∞p
1+γ + E0τ

−γ
ε p+ E∞Bp

γ + E0τ
−γ
ε B.

The function F0(t) in the time domain is governed by the
Mellin-Fourier inversion formula

F0(t) =
1

2πi

c+i∞∫
c−i∞

F̄0(p)eptdp. (64)

To calculate the integral (64), it is necessary to define all
singular points of the complex function F̄cont(p). This multi-
valued function possesses the branch points at p = 0 and p =
∞ and the simple poles at the same magnitudes of p = pk
which vanish to zero the denominator in equation (63), i.e.
they are the roots of the characteristic equation (46).

The inversion theorem is applicable to multi-valued func-
tions possessing branch points only on the first sheet of the
Riemann surface, i.e. when 0 < |arg p| < π. Thus a closed
contour of integration should be chosen in the form presented
in Figure 2. Considering Jordan lemma and applying the main
theorem of the theory of residues, we rewrite the integral (64)
in the following form:

F0(t) =
1

2πi

∞∫
0

[
F̄0(se−iπ)− F̄0(seiπ)

]
e−stds

+
∑
k

res
[
F̄0(pk)epkt

]
, (65)
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Fig. 2. Closed contour of integration

where the summation is carried out over all isolated singular
points (poles).

Knowing the function F0(t), it is possible to determine the
contact force Fcont(t) via the following formula:

Fcont(t) =
∫ t

0

F0(t′)dt′. (66)

Since the roots of the characteristic equation (46) are
complex conjugate ones and are defined by formula (61), then
equation (65) is reduced to

F0(t) = A0(t) +A exp(−αt) cos(ωt+ ϕ), (67)

where
A0(t) =

∫ ∞
0

B(s)e−stds,

B(s) =
(s−B)

[
Y Refγ(seiπ)−XImfγ(seiπ)

]
V0π

−1

[Refγ(seiπ)]2 + [Imfγ(seiπ)]2
,

Aj =
2V0

√
[N1(pj)]

2 + [N2(pj)]
2[

Ref ′γ(pj)
]2 +

[
Imf ′γ(pj)

]2 , A1 = A2 = A,

tanϕj =
Ref ′γ(pj)Re gγ(pj) + Imf ′γ(pj)Im gγ(pj)
Imf ′γ(pj)Re gγ(pj)− Ref ′γ(pj)Im gγ(pj)

,

tanϕ2 = − tanϕ2 = tanϕ,

Refγ(seiπ) = τ−γε
{
s2 [(sτε)γ cos(2 + γ)π + 1]

+s
[
(sτε)γ(B + E∞b

−1) cos(1 + γ)π − (B + E0b
−1)
]

+ (Bb−1 + 2M−1) [E∞(sτε)γ cos γπ + E0]
}

= Refγ(se−iπ),

Imfγ(seiπ) = τ−γε
[
s2(sτε)γ sin(2 + γ)π

+s(sτε)γ(B + E∞b
−1) sin(1 + γ)π

+ (Bb−1 + 2M−1)E∞(sτε)γ sin γπ
]

= −Imfγ(se−iπ),

Ref ′γ(p1) = (2 + γ)r1+γ cos(1 + γ)ψ + 2rτ−γε cosψ

+(1 + γ)(B + E∞b
−1)r cos γψ

+γE∞(Bb−1 + 2M−1)rγ−1 cos(γ − 1)ψ

+(B + E0b
−1)τ−γε = Ref ′γ(p2),

Imf ′γ(p1) = (2 + γ)r1+γ sin(1 + γ)ψ + 2rτ−γε sinψ

+(1 + γ)(B + E∞b
−1)r sin γψ

+γE∞(Bb−1 + 2M−1)rγ−1 sin(γ − 1)ψ = −Imf ′γ(p2),

X = E0τ
−γ
ε + E∞s

γ cosπγ, Y = E∞s
γ sinπγ,

N1(pj) = Ref ′γ(pj)Re gγ(pj) + Imf ′γ(pj)Im gγ(pj),

N1(p1) = N1(p2),

N2(pj) = Imf ′γ(pj)Re gγ(pj)− Ref ′γ(pj)Im gγ(pj),

N2(p1) = −N2(p2),

Re gγ(p1) = E∞r
1+γ cos(1 + γ)ψ + E0τ

−γ
ε r cosψ

+BE∞rγ cos γψ +BE0τ
−γ
ε = Re gγ(p2),

Im gγ(p1) = E∞r
1+γ sin(1 + γ)ψ + E0τ

−γ
ε r sinψ

+BE∞rγ sin γψ = −Im gγ(p2).

The first term in equation (67) defines the drift of the
equilibrium position, while the second term governs damping
vibrations around the drifting equilibrium position.

According to equation (66), for determining the function
Fcont(t), it is a need to integrate the function (67) over t from
o to t. As a result we obtain

Fcont(t) =
∫ ∞

0

B(s)
(
1− e−st

)
ds

+
A

α2 + ω2

{
α sinϕ+ ω cosϕ

− e−αt [α sin(ωt+ ϕ) + ω cos(ωt+ ϕ)]
}
. (68)

V. CONCLUSION

The impact of a long thin cylindrical plain-ended elastic
rod upon an infinite isotropic rectangular prismatic beam is
investigated for the case when the viscoelastic features of
the beam represent themselves only in the place of contact
as a result of changes of target’s microstructure during the
process of contact interaction and are governed by the standard
linear solid model with fractional derivatives. Out of the
contact domain the target remains elastic with the non-relaxed
magnitude of the elastic modulus. Due to the short duration
of contact interaction, the reflected waves are not taken into
account. In other words, it is assumed that the impactor will
bounce from the target before the reflected waves have a time
to reach the place of contact. The problem of determining the
contact force is a quasi-linear one, and the Laplace transform
technique has been used for its analytical solution.

ACKNOWLEDGMENT

The research described in this publication has been sup-
ported by the international project from the Russian Foun-
dation for Basic Research No.14-08-92008-HHC-a and Tai-
wan National Science Council No. NSC 103-2923-E-011-002-
MY3.

Recent Advances in Mathematical Methods in Applied Sciences

ISBN: 978-1-61804-251-4 30



REFERENCES

[1] S. Abrate, “Modeling of impacts on composite structures,” Composite
Structures, vol. 51, pp. 129–138, 2001.

[2] Yu. A. Rossikhin and M. V. Shitikova, “Transient response of thin
bodies subjected to impact: Wave approach,” Shock and Vibration
Digest, vol. 39, pp. 273–309, 2007.

[3] Yu. A. Rossikhin and M. V. Shitikova, “Application of fractional
calculus for dynamic problems of solid mechanics: Novel trends and
recent results,” Applied Mechanics Reviews, vol. 63(1), pp. 010801-
1–52, 2010.

[4] Yu. A. Rossikhin and M. V. Shitikova, “Two approaches for studying
the impact response of viscoelastic engineering systems: An overview,”
Computers and Mathematics with Applications, vol. 66, pp. 755–773,
2013.
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